General Certificate of Education June 2007
Advanced Subsidiary Examination
MATHEMATICS
MPC2

(A)A

Unit Pure Core 2

Monday 21 May 20079.00 am to 10.30 am

For this paper you must have:

- an 8-page answer book
- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MPC2.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.

Information

- The maximum mark for this paper is 75 .
- The marks for questions are shown in brackets.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.

Answer all questions.

1 (a) Simplify:
(i) $x^{\frac{3}{2}} \times x^{\frac{1}{2}}$;
(1 mark)
(ii) $x^{\frac{3}{2}} \div x$;
(1 mark)
(iii) $\left(x^{\frac{3}{2}}\right)^{2}$.
(b) (i) Find $\int 3 x^{\frac{1}{2}} \mathrm{~d} x$.
(ii) Hence find the value of $\int_{1}^{9} 3 x^{\frac{1}{2}} \mathrm{~d} x$. (2 marks)

2 The nth term of a geometric sequence is u_{n}, where

$$
u_{n}=3 \times 4^{n}
$$

(a) Find the value of u_{1} and show that $u_{2}=48$.
(b) Write down the common ratio of the geometric sequence.
(c) (i) Show that the sum of the first 12 terms of the geometric sequence is $4^{k}-4$, where k is an integer.
(ii) Hence find the value of $\sum_{n=2}^{12} u_{n}$.

3 The diagram shows a sector $O A B$ of a circle with centre O and radius 20 cm . The angle between the radii $O A$ and $O B$ is θ radians.

The length of the arc $A B$ is 28 cm .
(a) Show that $\theta=1.4$.
(b) Find the area of the sector $O A B$.
(c) The point D lies on $O A$. The region bounded by the line $B D$, the line $D A$ and the arc $A B$ is shaded.

The length of $O D$ is 15 cm .
(i) Find the area of the shaded region, giving your answer to three significant figures.
(3 marks)
(ii) Use the cosine rule to calculate the length of $B D$, giving your answer to three significant figures.
(3 marks)

4 An arithmetic series has first term a and common difference d.

The sum of the first 29 terms is 1102.
(a) Show that $a+14 d=38$.
(b) The sum of the second term and the seventh term is 13 .

Find the value of a and the value of d.

5 A curve is defined for $x>0$ by the equation

$$
y=\left(1+\frac{2}{x}\right)^{2}
$$

The point P lies on the curve where $x=2$.
(a) Find the y-coordinate of P.
(b) Expand $\left(1+\frac{2}{x}\right)^{2}$.
(c) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(d) Hence show that the gradient of the curve at P is -2 .
(e) Find the equation of the normal to the curve at P, giving your answer in the form $x+b y+c=0$, where b and c are integers.

6 The diagram shows a sketch of the curve with equation $y=3\left(2^{x}+1\right)$.

The curve $y=3\left(2^{x}+1\right)$ intersects the y-axis at the point A.
(a) Find the y-coordinate of the point A.
(b) Use the trapezium rule with four ordinates (three strips) to find an approximate value for $\int_{0}^{6} 3\left(2^{x}+1\right) d x$.
(c) The line $y=21$ intersects the curve $y=3\left(2^{x}+1\right)$ at the point P.
(i) Show that the x-coordinate of P satisfies the equation

$$
2^{x}=6
$$

(ii) Use logarithms to find the x-coordinate of P, giving your answer to three significant figures.

Turn over for the next question

7 (a) Sketch the graph of $y=\tan x$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$.
(b) Write down the two solutions of the equation $\tan x=\tan 61^{\circ}$ in the interval $0^{\circ} \leqslant x \leqslant 360^{\circ}$.
(c) (i) Given that $\sin \theta+\cos \theta=0$, show that $\tan \theta=-1$.
(ii) Hence solve the equation $\sin \left(x-20^{\circ}\right)+\cos \left(x-20^{\circ}\right)=0$ in the interval $0^{\circ} \leqslant x \leqslant 360^{\circ}$.
(4 marks)
(d) Describe the single geometrical transformation that maps the graph of $y=\tan x$ onto the graph of $y=\tan \left(x-20^{\circ}\right)$.
(2 marks)
(e) The curve $y=\tan x$ is stretched in the x-direction with scale factor $\frac{1}{4}$ to give the curve with equation $y=\mathrm{f}(x)$. Write down an expression for $\mathrm{f}(x)$.
(1 mark)

8 (a) It is given that n satisfies the equation

$$
\log _{a} n=\log _{a} 3+\log _{a}(2 n-1)
$$

Find the value of n.
(b) Given that $\log _{a} x=3$ and $\log _{a} y-3 \log _{a} 2=4$:
(i) express x in terms of a;
(ii) express $x y$ in terms of a.

END OF QUESTIONS

There are no questions printed on this page

There are no questions printed on this page

